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compute such an e!
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Decomposition attacks

Input. (G,+); A, B € G, A a generator

1. Compute N := ord(G).
2. Fix a decomposition base / factor base 7 = {Fy,..., F,}.
3. Compute r + 1 relations

QA+ BiB =Y rijfj.
J

4. Compute v € Z/NZ with YR = 0.

= (Z yiei)A + (Z 7iBi)B =0

5. Output e := —% € Z/NZ.

P Yi%i
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Decomposition attacks

Task. Compute decompositions:

R=nF+-+rF.

with
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Given: E/Fgn, n > 1 with points A, B.

Recall: x(P) determines £P.
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In elliptic curves

Definition of F:
Fix U <TFgn. Let

Fi={PeEFq)|x(P)e U}

Decomposition:
R=P1+ -+ Ppn

with x(P;) € U, m-dim(U) = n

via solving polynomial systems over [F.



A result

Theorem Let a, b > 0 be fixed. Then the DLP in elliptic curves
over Fgn can be solved in:

> For a-log(q)"/2 < n < b-log(q)"/? : exp(O(log(q")*/?)).

> For a-log(q)/® <n<b-log(q) : exp(O(log(q")**)).

log(n) 1/2

1/34

log log (q)
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Solving polynomial systems

Let Fi,...,Fn € k[Xo, ..., X,] be homogeneous polynomials.

Then “generically”, the system

has exactly B := deg(F1) - - - deg(F,) solutions over k.

For k = IF4 one can find all these solutions in a time of
(B - log(q))°W.
1. Linear algebra on a system X9 - F; (variable i, ).

2. Factorization of a single univariate polynomial.
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Solving polynomial systems

What if | have a system of inhomogeneous polynomials
fi,....fr €Fglxt,...,xd]?

“Most of the time” it is like considering the system of leading
terms.
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Solving polynomial systems

What if | am just interested in solutions over [F,?
One can add the field equations

x7

P X

» irrelevant if degree g is not reached (“large characteristic”)

» particularly relevant for g = 2.
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Solving polynomial systems

What if | just want to find a single solution over ;7

Or whether there exists a solution over Fg?
This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.
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Large characteristic

Let E/Fgn be given.
Consider m = n, U = (v).

We search for decompositions

R=Pi+--+P,, x(P))e U.
For example: Solve a system with n equations of degree 2" 1.
Heuristic: There are 2"("=1) solutions over F,.
Running time: 29(™) . [og®(1)(q).

Faster?
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Characteristic 2

Consider the DLP for E /Fon.

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R =P; + -+ P, ...

.. which should be about -1 ...

. one obtains

£O(y/log(n))

| am going to argue:

If this is correct, then there is a polynomial time algorithm.
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Increased probability

Traditional:
Fix V < Fan.
Given R, compute R = Py + -+ + Pp, with x(P;) € V.

Variant:
Fix Fon = @ V.
i=1

Given R, compute R = P; + -+ - + Pp, with x(P;) € V;.

Now set m :=n, V; = (v;).
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New algorithm

For points A, B,
find one decomposition / representation of the form

B=+A+2A... 42734

If it exists, it is unique.

Equivalent:
B+A+2A+...£2"34=0.

S3(x(B),x(A),x1) =0, S3(x1,x(2A),x2) =0,...,
S3(Xn—4, x(2"72A), x(2"3A)) = 0
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Experimental results

Largest experiment for n = 11.
55 variables, 66 quadratic equations

Largest degree reached in Grobner base computation: 3
. with 30 GB.

A heuristic says: For random systems usually: 8
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What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 _ n15 .

n ‘ 15 ‘2n/2.n2

10 250 212
100 | 2% 264
200 2114 2116

Storage: ((n?)3)? bits = n'? bits.

For n = 100: 1002 bits = 10%* bits > 10%! bytes = 10007 bytes =
1 Zettabyte !



