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A result

Theorem Let a, b > 0 be fixed. Then the DLP in elliptic curves
over Fqn can be solved in:

I For a · log(q)1/2 ≤ n ≤ b · log(q)1/2 : exp(O(log(qn)2/3)).

I For a · log(q)1/3 ≤ n ≤ b · log(q) : exp(O(log(qn)3/4)).



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have a system of inhomogeneous polynomials
f1, . . . , fr ∈ Fq[x1, . . . , xn]?

“Most of the time” it is like considering the system of leading
terms.



Solving polynomial systems

What if I have a system of inhomogeneous polynomials
f1, . . . , fr ∈ Fq[x1, . . . , xn]?

“Most of the time” it is like considering the system of leading
terms.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi

:

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).
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Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm ...

... which should be about 1
m! ...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.
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Increased probability

Traditional:

Fix V < F2n .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ V .

Variant:

Fix F2n =
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i=1
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Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ Vi .

Now set m := n, Vi = 〈vi 〉.
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New algorithm

For points A,B,
find one decomposition / representation of the form

B = ±A± 2A · · · ± 2n−3A .

If it exists, it is unique.

Equivalent:
B ± A± 2A± · · · ± 2n−3A = 0 .

S3(x(B), x(A), x1) = 0, S3(x1, x(2A), x2) = 0, . . . ,

S3(xn−4, x(2n−2A), x(2n−3A)) = 0
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55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.
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Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity
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Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !
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