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Elliptic curves

I Fq finite field of size q = pn, p is called characteristic

I Cubic Y 2 = X 3 + aX + b, characteristic p 6= 2, 3

I or Y 2 + XY = X 3 + aX 2 + b, characteristic = 2

I E (Fq) is points P = (x , y) satisfy the cubic and ∞
I For P = (x , y), denote

I P̄ = (x ,−y), characteristic p 6= 2
I P̄ = (x , y + x), characteristic p = 2



Group Operation

I To sum points P1,P2 ∈ E do

I P1 6= P2 draw line and get P3 ∈ E . Then P1 + P2 = P̄3

I P1 = P2 draw tangent, get P3 ∈ E , then P1 + P2 = P̄3

I E (Fq) finite commutative group with ∞ neutral element



Discrete Logarithm Problem

I Given P,Q ∈ E (Fq) find integer x such that

I Q = xP( in multiplicative notation Q = Px )

I Hard problem except few easy cases

I Miller and Koblitz independently suggested first elliptic curve
based protocols(like Diffie-Hellman etc)



Easy cases

I supersingular curves, like Y 2 = X 3 − X , over Fp and
p ≡ 3(mod4), Menezes-Okamoto-Vanstone(1990),
Semaev(1990)

I anomalous curves, where |E (Fp)| = p, Semaev(1995),
Satoh-Araki(1997), Smart(1997)



NIST Curves

I over F2n , where n = 163, 233, 283, 409, 571:

I Koblitz curve Y 2 + XY = X 3 + aX 2 + 1, a = 0, 1

I ”Pseudo-random” curve Y 2 + XY = X 3 + X 2 + b

I over Fp, where log2 p ≈ 192, 224, 521, 256, 384, 521:

I ”Pseudo-random” curve Y 2 = X 3 − 3X + b



Pollard’s ρ

I Basic idea: iterate a pseudorandom function f on E (Fq):

I xi+1 = f (xi ), check for a collision x2i = xi

I Results in the problem solution

I Runs in time q1/2, memory size negligible

I Fully parallelizable, Oorschot-Wiener(1996)

I Improved by Teske(1998), Gallant-Lambert-Vanstone(1999),
etc

I Asymptotic bound remained



Logarithms in Fp

I Given a, b ∈ Fp, find integer x such that b ≡ ax mod p

I Index Calculus, Kraitchik(1924):

I B parameter, 2, 3, .., q < B small primes

I for random y compute d ≡ ayb mod p

I try to factor d = 2l23l3 ..qlq , if yes

I y + x ≡ l2 loga 2 + l3 loga 3 + . . .+ lq loga q mod p − 1

I Collect ≈ B/ lnB such equations. Resolve and find x .



Logarithms in Fp. Asymptotic

I Take B ≈ exp(0.5
√

ln p ln ln p)

I Algorithm runtime

≈ exp(1.5
√

ln p ln ln p)

I Far better than Pollard’s p1/2

I Was largely improved

I Best in Matyukhin(2003)

I Can that work for elliptic curves?



Decomposition

I In Fp d ≡ ayb mod p, where b ≡ ax

I decompose d = 2l23l3 ..qlq

I to the factor base {2, 3, . . . , q}
I In elliptic curves, R = yP + Q, where Q = xP

I decompose R = P1 + P2 + . . .+ Pm

I Pi ∈ V factor base?



Summation Polynomials

I Semaev(2004): R = P1 + P2 + . . .+ Pm is equivalent to

I explicitly constructed polynomial equation(equation system)

Sm+1(Rx , x1, . . . , xm) = 0

I R = (Rx ,Ry ) and Pi = (xi , yi )

I Over F2n , naturally deg xi ≤ n/m

I Over Fp, naturally xi ≤ pn/m

I Point Decomposition Problem:

I R random point with known logarithm, find such xi

I Asymptotically, to overcome Pollard’s a fast resolution for
m = 5 requires



Summation Polynomials

I Notation Pi = (xi , yi ). For some yi

I P1 + P2 + . . .+ Pm =∞⇔ Sm(x1, . . . , xm) = 0

I Characteristic 2 curve

Y 2 + XY = X 3 + aX 2 + 1, a = 0, 1

I S2(x1, x2) = x1 + x2
I S3(x1, x2, x3) = (x1x2 + x2x3 + x1x3)2 + x1x2x3 + 1

I S4(x1, x2, x3, x4) = ResX (S3(x1, x2,X ),S3(x3, x4,X ))

I S5(x1, x2, x3, x4, x5) = ResX (S4(x1, x2, x3,X ),S3(x4, x5,X ))

I . . .



Development

I Gaudry(2004), Diem(2004) in case E (Fqn ):

I Solve the system from

Sm+1(Rx , x1, . . . , xm) = 0, deg xi ≤ n/m

with a Gröbner basis algorithm

I Asymptotical improvements over Pollard’s for E (Fqn ), where

I n fixed, q grows, final bound is exponential

I n, q grow simultaneously in some way, final bound is
sub-exponential in qn

I also Joux-Vitse(2012)



Gröbner basis algorithms

I Solve

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

. . .

fm(x1, . . . , xn) = 0,

for xi ∈ Fq by computing Gröbner basis for < f1, f2, . . . , fm >.

I Lazard(1983): construct matrices with rows

I coefficient vectors of gfj , deg gfj ≤ d

I compute Row Echelon Form

I construct back polynomials from rows: a Gröbner basis for
some d

I An efficient variant F4, in Faugère(1999), in MAGMA



Complexity

I regularity degree dreg maximum degree before the basis is
computed

I complexity ≈ ndregω, 2 ≤ ω ≤ 3

I Bardet et al(2003): for semi-regular polynomials f1, . . . , fm
I dreg only depends on n,m, deg fi
I For quadratic(deg fi ≤ 2) semi-regular polynomials over F2

m, n dreg complexity

m = αn βn exponential
n = o(m) o(n) sub-exponential
m = αn2 β polynomial

I E.g. m > n2

6 then dreg = 3.

I Conjecture(Bardet et al): Probability that a random equation
system is semi-regular tends to 1



First Fall Degree vs Regularity Degree

I Gröbner basis algorithm repeatedly computes
∑

i gi fi
I First fall degree dff smallest d such that

max
i
{deg gi + deg fi} = d

I but deg
∑

i gi fi < d . First Fall Degree Assumption dreg ≈ dff

I **********

I Trivially fi fi = fi over F2. So if dreg ≈ dff than P=NP

I Nevertheless for some equation systems like HFE dff = dreg

I for some others like AES dff < dreg

I dff is relatively easy to compute, dreg not



Development

I Faugère et al(2012) for

Sm+1(Rx , x1, . . . , xm) = 0, xi ∈ V :

I in char 2, experimentally dreg is lower than expected

I Petit-Quisquater(2012): dff ≤ m2 + 1

I If dreg ≈ dff , then

I Resolution is sub-exponential

I Supported by experiments in Shantz-Teske(2013)

I ⇒ Conjectured subexponential bound for binary ECDLP



Development

I Semaev(2015) rewrite relation

P1 + P2 + · · ·+ Pm+1 =∞⇔ Sm+1(x1, . . . , xm, xm+1) = 0

I as

P1 + P2 = (u1, ∗)
P1 + P2 + P3 = (u2, ∗)

. . .
P1 + · · ·+ Pm + Pm+1 =∞,

⇔

S3(x1, x2, u1) = 0
S3(u1, x3, u2) = 0

. . .
S3(um−2, xm, xm+1) = 0,

I In characteristic 2, the equations of degree ≤ 3

I xm+1 ← Rx , solve in deg xi ≤ n/m and deg uj < n

I #variables= #equations = n(m − 1)

I with Gröbner basis algorithm



Experiments in Semaev(2015)

I Strikingly faster than in Petit -Quisquater and Shantz-Teske:

I n = 21,m = 3, solve

S4(Rx , x1, x2, x3) = 0, deg xi < 7 (subspace of dim = 7) in F221

I 21 six degree equations in 21 variables: 6910 sec and 27 GB,
degree dreg = 7

I equivalent system of 42 cubic equations

S3(x1, x2, u) = 0
S3(u, x3,Rx ) = 0

in 42 variables: 133 sec and 2.5 GB, degree dreg = 4

I Similar results independently in Karabina(2015)



Regularity Degree

I In all experiments cubic equations and dreg ≤ 4

I Maximum number of variables was 60 and still dreg = 4

I For semi-regular(generic case) cubic equations in 60 variables
dreg = 15

I Idea: even if dreg grows with n but very slowly



Conjectured bound for binary ECDLP

I For m proportional to
√
n/ ln n

I Decomposition ⇔ solving cubic equations

I in n(m − 1) =
√

n3/ ln n variables

I If(assumption) dreg = o(
√
n/ ln n)

I then ECDLP over F2n is solved in

2c
√

n ln n

for c ≈ 1.62...

I Some FIPS curves are broken if dreg = 4(extreme case)



Does dreg grow?

I Solve S3(x1, x2,Rx ) = 0, deg xi ≤ n/2 in E (F2n )

I already for n = 45, dreg = 5, not 4 (reported by Kosters)

I the computation took > 10 hours and 120GB

I Try hybrid method?

I (studied by Shantz-Teske for n ≤ 40)

I For n = 45, guess 5 bits in each xi , 210 guesses

I Run a Gröbner basis algorithm for each guess

I Overall < 2 min and 0.2 GB, degree dreg = 4



Asymptotic Decomposition Complexity

I Hybrid method to evaluate for large n

I E.g. solve S3(x1, x2,Rx ) = 0, deg xi ≤ n/2 in E (F2n )

I k = k(n) optimal number of guessed bits

I Choose k, run over 100 < 2k random guesses, note runtime,
extrapolate to all guesses

I Find local minimum in k

I Probably gives global minimum k(n) and minimum runtime

I or an upper bound



Complexity Evaluation

I Local minimum of runtime as a function of k
n k sec dreg

46 10 122 4
48 10 92 4
50 10 650 4
52 12 420 4
54 14 1510 4
56 14 2005 4
58 14 2595 4
60 14 5364 4
62 16 20345 4
64 16 14185 4
66 18 85747 4
68 18 65850 4
70 20 296694 4
72 20 467350 4



Decomposition Complexity

I Continue till n = 174, underground field size 2174

I Draw the curve in log-scale

I Exponential or sub-exponential as a function in n?

I Typical curves



Decomposition Complexity
I Complexity curve(in red) in log-scale
I F4 takes a few sec for each guess of ≈ n/3 + o(n) bits
I n = 174 local min at k = 62,
I F4 took 11 sec, 2GB, degree dreg = 4 for 174 eqns in 112 var,
I Time(sec) < 20.4n for n ≤ 174
I Overcomes brute-force 20.5n?



Decomposition Complexity
I blue curve 1.5n3/4 − 25
I green curve ln(n)2.75 − 40, both o(n)
I sub-exponential complexity 2o(n)? Requires more data to

decide
I Local minima not necessarily global minima
I So red curve might be more gradual



Decomposition Complexity

I Similarly, complexity of solving
Sm+1(x1, . . . , xm,Rx ) = 0, deg xi ≤ n/m

I By splitting Sm+1 = 0 into m − 2 equations S3 = 0

I Run experiments with Hybrid method

I In progress



Courtois(2016) results

I Solve S3(x1, x2,Rx ) = 0, deg xi ≤ n/2 in E (F2n )

I Brute force: 2n/2 operations

I Event: x1, x2 have a known common factor f of degree n/6

I then x1, x2 easy to find

I Courtois: take random Rx (with known logarithm)

I wait the event to happen, search over f . Expected runtime
2n/3

I Also

S4(x1, x2, x4,Rx ) = 0, deg xi ≤ n/3 in E (F2n )

in time 2n/3



Reduce dreg further

I Get very over-defined equation system

I by introducing more new variables like in Kipnis-Shamir(1999)
relinearization

I S3(x , y ,Rx ) = (xy + (x + y)Rx )2 + xyRx + 1

= (U + VRx )2 + URx + 1 = 0 (1)

I where U = xy and V = x + y

I System of n linear equations in 3n
2 bit variables of U,V

I Any f such that f (U,V ) = 0 (10 quadratic polynomials)

I is added to linear equations (1)



Put the idea to extremes

I Introduce N ≈ n2

8 new variables

zij = xiyj + xjyi ,

zii = xiyi , (2)

zi = xi + yi

I Write U = xy ,V = x + y as linear combinations of (2)

I So (U +VRx )2 +URx + 1 = 0 linear equations in new variables

I Get M ≈ n4

16×48 linearly-independent quadratic equations.

I Add quadratic equations to the linear

I Run a Gröbner basis algorithm or the hybrid method



Complexity

I Recall that for semi-regular equation system:

I dreg = 3 for M > N2

6 (just the case)

I ⇒ Polynomial solution in time N3ω = O(n6ω), where ω ≤ 3

I By experiments, regularity degree really drops

I to dreg = 3 for n = 30

I Problem: Is that true for larger n?

I *****

I Similar works for Sm+1(x1, . . . , xm,Rx ) = 0

I after splitting to S3 = 0



AES vs PDP

I Scaled AES: find 16-bit key(48 effective variables, quadratic
equations, 2100 sec with F4, degree dreg = 4)

8

P C

8

S L S L

8 8

8 8 8 8

I Decompose R = P1 + P2 + P3 + P4 in E (F216) by solving

S3(x1, x2, u1) = 0, deg xi < 4, deg ui < 16

S3(x3, u1, u2) = 0

S3(x4, u2,Rx ) = 0

48 variables, cubic equations, 375 sec with F4, degree dreg = 4



Resolution methods

I Gröbner basis algorithm or hybrid method

I SAT-solvers, tried by Galbraith-Gebregiyorgis(2014)

I MRHS by Raddum-Semaev(2008)



Conclusions

I Recent results and solving technics for decomposition attacks
are surveyed

I Complexity evaluation for large parameters by hybrid method
is introduced

I Construction of very over-defined equations for PDP by
introducing even more new variables is described

I Solving AES vs PDP is discussed


